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approach starting from N-allyl-7-formyl indoles.
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Many natural and synthetic products containing functionalized
medium-sized rings display potent biological activities. For
example, the natural alkaloid manzamine A 1 possesses significant
antileukaemic and antimicrobial activities.1 Paullones 2 are cyclin-
dependent kinase inhibitors2 while bisindolylmaleimides 3 have
been developed to treat diabetic complications.3
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Medium-sized ring 1,7-annulated indoles, however, have not
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been extensively studied. Thus, synthetic approaches towards these

structures are currently limited. Al-awar and co-workers reported
the synthesis of 1,7-annulated bisindolyl maleimides 4 and related
indolocarbazoles from the 7-bromoindole via Stille coupling with
tributylvinyltin followed by N-alkylation with 5-bromopentene
and subsequent ring-closing metathesis.2 Conversely, van Wijinga-
arden et al. began with a tetrahydrobenzazepine or a tetrahydro-
quinoline derivative, reacting with ethyl bromopyruvate and then
with magnesium chloride to produce annulated indoles 5.4
ll rights reserved.
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Therefore, developing versatile synthetic routes to functional-

ized medium-sized ring 1,7-annulated indoles is of interest. In gen-
eral, routes to 1,7-annulated indoles are restricted by the lack of
        R  = Ph, 4-BrC6H4, 4-ClC6H4, 4-MeC6H4

 R2 = Ph, H
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reactivity of indoles at C7. However, functionalization at C7 can be
readily achieved through the use of specifically activated indoles.5

We have used this synthetic strategy to construct 1,7-annulated
five- and six-membered indoles.6 Here, we report a facile route
to functionalized eight- and nine-membered 1,7-annulated indoles
from substituted 4,6-dimethoxyindoles.

Based upon the reports by Deb et al.7 and Comer et al.,8 it was
envisaged that a ring-closing metathesis approach would allow ac-
cess to the target compounds (Scheme 1). Ring-closing metathesis
is a powerful and versatile approach to construct medium size
rings.9 The Michael addition to nitroalkenes used in this methodol-
ogy is an efficient synthetic step to more complex molecules, and
the nitro group also serves as a masked functionality which could
be further transformed if desired.10

Formylation of indoles 6a–d with one equivalent of the Vilsme-
ier reagent was regioselective and afforded the 7-carbaldehydes
7a–d in good yields, without the formation of the 2-isomer. The
Scheme 4.

Figure 1. ORTEP diagram of compound 13c.13



1608 K. Wood et al. / Tetrahedron Letters 51 (2010) 1606–1608
N-allyl derivatives 8a–d were furnished in high yields through
treatment with potassium hydroxide in dimethylsulfoxide fol-
lowed by the addition of allyl bromide (Scheme 2).

Indoles 8a–d then underwent a Henry reaction with refluxing
nitromethane in isopropanol for 3 h. The nitroalkenes 9a–d were
obtained in high yields upon cooling (Scheme 2).

The next step was to introduce the second alkene unit in the prep-
aration for the ring-closing metathesis. Different alkyl groups could
be used at this point to provide access to rings of different sizes.

Initially nitroalkenes 9a–d were stirred under inert conditions
in dry THF with allylmagnesium bromide for 2–3 h to afford the
Michael adducts 10a–d in good yields as low melting solids
(Scheme 3).11 An extension of the alkenyl chain was attempted
by the reaction of indoles 9a–d with butenylmagnesium bromide.
However, these reactions were noticeably slower and required
approximately three days and a larger excess of the Grignard re-
agent to reach completion. Compounds 11a–d were obtained as
oils in significantly lower yields of 17–54% (Scheme 3).

The ring-closing metathesis reactions were achieved by reflux-
ing the Michael adducts 10a–d in dry, degassed toluene in the
presence of 5–10 mol % of Grubbs’ 2nd generation catalyst. The
reactions reached completion within 4 h, and upon work up pro-
duced the indole-fused eight-membered ring compounds 12a–d
in moderate yields (Scheme 4).12 The ring-closing metathesis of in-
doles 11b–d was also successful under similar conditions, forming
the corresponding indole-fused nine-membered rings 13b–d in
40–42% yield (Scheme 4).

The structures of all the 1,7-annulated indoles were established
on the basis of 1D and 2D NMR spectroscopy data. The 1,7-annu-
lated structure of compound 13c was confirmed by X-ray crystal-
lography (Fig. 1).

In summary, the unique reactivity of 4,6-dimethoxyindoles has
been utilized to produce a range of novel eight- and nine-mem-
bered 1,7-annulated indoles. This methodology is an effective
and flexible route to 1,7-annulated indoles and enables a system-
atic evaluation of their biological properties.
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